Implementing Smart Digital Solutions For Power and Water Management

May 26, 2021

+

Introduction

Need for Smart Digital Solutions in Hydro Operation

Smart Digital Solutions: Scope

Benefits of Digital Solutions for Operations

- Optimization and Economic Benefits:
 Potentially of the order of 1% to 5%
- Assist planners, schedulers and operators in investigating alternate scenarios
- Training of new staff
- Greater automation

Hatch Power and Water Resource Modelling

- Hatch (formerly Acres) has a long history of world-class simulation and optimization of power and water resource systems
- 1970s developed and applied Acres Reservoir Simulation Package (ARSP)
- ARSP implementations over 30+ years
- Vista Decision Support System (Vista DSSTM) developed in 1990s through present time
- Diverse implementations of Vista DSS and continuous evolution

Vista DSSTM Solution Overview

Vista DSS™ Planning + Scheduling Software for Hydroelectric Operations

Forecasting

- Inflow Forecasting
 - Met Data representation
 - Rainfall-runoff model
 - Watershed model calibration
 - Long term forecast
 - Short term forecast
 - Automatic adjustment for actual flows
- Irrigation Water Demand Forecasting
 - Met data representation
 - Evapotranspiration calculation
 - Water Demand model
 - Long Term seasonal forecast

Planning and Scheduling

- Long Term Planning
 - Stochastic optimization
 - Seasonal reservoir trajectories
 - Long term generation and transactions
 - Value of water in storage
- Short Term Scheduling
 - Optimal water allocation
 - Plant and unit dispatch
 - Short term transactions
 - Bid curves
 - Hydro-Thermal coordination

Simulate Real-Time Operation

- Plant dispatch
- Unit Dispatch
- Water levels
- Constraint monitoring

Operator's View

Manager's View

Study Applications

- Upgrade and rehabilitation studies
 - -Unit upgrade
 - Additional storage
- Redevelopment studies
- Relicensing
- Integrated resource planning
 - -Wind integration
 - New facilities

Flexible Models

- Large and small hydro plants
- Storage
- Hydro-Thermal generation
- Exchange of energy with neighboring countries
- Other renewables
- Model both hydraulic and transmission networks
- Energy and Ancillary services

History of Deployment

+

Experience in Applying Decision Support Systems

Climate Change – Reservoir Management

- Major Canadian utilities using the Vista DSS. Hatch has worked closely with them for decades.
- Some evidence of increased climate variability evident in recent decade(s)
 - Extremes dry/wet
 - Timing of spring runoff
 - Makes reservoir management more challenging

Northern Ontario

Eastern Canada

Reservoir Management: Adaptive Decision Support Systems vs. Guide Curves

- Guide Curves (GC) are still commonly used to manage reservoir
- GC are static and usually derived from historic water levels
- Reflect operations under "average" conditions
- Adaptive Decision Support Systems
 - Dynamic, no pre-determined plan
 - Respond to inflow forecasts, price, load uncertainty
 - Analysis revisited every week

Multi-Use Reservoir Management in Asia

- Hydropower is an important but not primary objective in reservoir use
- Multiple stakeholders
- Changing conditions due to:
 - Economic development
 - Climate change

Long Term Planning with *Vista* DSSTM (Sri Lanka)

- 35 reservoirs (/tanks)
- 30 irrigation areas
- 15 hydro plants
- 20 major diversions/ canal
- Complex and large system given country size
- Seasonal Operating plan
- Short term operation

Multi-Objective Operation: Hydro Generation

- Significant contribution: 30-50%
- Peaking capability

Multi-Objective Operation: Irrigation

- Irrigation as a primary objective
- Rice paddies (40% of all crops)
- Non-paddy crops
- Distribution to diverse areas
- Management of water shortages

Water Availability/ Shortage Analysis

- Time series analysis
- Reliability criteria
- Interactive use for crop selection

Use of Water Management System for Decision Making

Flood and Spill management in South-East Asia

- Intense Rain Events
- Need for accurate forecasting
- Minimize spill
- Dam safety consideration

Sarawak Energy, Malaysia Inflow Forecast and Dynamic Dispatch

Bakun Dam, 2,400MW

Murum Dam, 944MW

HATCH

Flow and Flood Forecasting

High Quality Weather Forecast

EnWeather™ - WEATHER FORECASTING

High-resolution micro-climate weather forecasts are crucial to ensuring safety and operational excellence across the hydro-power, air traffic control, and renewable energy generation sectors.

EnWeather provides up to **0.5km x 0.5km** Temperature, Wind, Humidity, Rain, Lightening and Solar Irradiance at **15-minute resolution** up to **72 hours** in advance, at over 90% forecast accuracy.

Capabilities

EnWeather offers the world's first high-definition AI weather forecast. Coverage includes:

- Irradiance
- Temperature
- Humidity
- Wind speed and direction
- Rainfall
- Lightning

Precipitation Forecast

Inflow Forecast

Market Deregulation

- Many regions have markets for
 - Energy
 - Ancillary Services (Reg-up, Regdown, spin and non-spin)
- Hydro generation usually an energy limited resource and hydro is ideally suited for A/S
- Trade-off between offering energy or A/S into market
- Joint optimization is needed

- Spin
- Non-Spin
- Regulation Up
- Regulation Down

Short Term Scheduling and Market Bids (CA, USA)

- Two River System
- Ten powerhouses
- -1,000 MW
- Seven Major Dams
- Generation and A/S bid into CAISO market

ST – Joint Optimization and Bid Creation Process

Step 1: Optimization of Energy and A/S

Step 2: Bid Costs Analysis

- Price sensitivity analysis
- Get optimal energy for each price

Step 2: Results Energy Bid Curves

- Price Volume curves based on price-volume sensitivity analysis
- Direct output of the ST short term model Bid analysis

Step 3: Backcasting

All Hours

Real-Time Operation in Western US

- Coordination between cascading hydro plants
- Load balance requirements
- Automated generation control while handling water management

Chelan County PUD Efficient Dispatch with RT *Vista* (WA, USA)

Two plants in cascade:

Rocky Reach: 1000 MW

Rock Island: 650 MW

5-minute load/ inflow forecast

- 4 second load signal
- RT Vista used on-line in
 - Planning mode --5 min resolution
 - Instantaneous mode 4 sec updates
- Over 1000 tags communicated with SCADA via OPC at every cycle

Scope: Automated Optimal Control in Real Time

- Meet Load
- Meet license requirements
- Optimal water management (Smart AGC)

Objective = Flow Usage + Constraint penalty

- Minimize Flow (water usage) for given load
- Minimize constraint penalty
- Minimize over total River/ Time horizon

Solution Strategy

- Two-stage strategy
- Optimization based
- Performance driven
- Built-in simulator

Real-Time Implementation

Dedicated server to perform calculations

Simulated Performance and Stability

- Response
- Anticipation
- Preferred options

+

Concluding Remarks

Future Directions

- Further advances in optimization technologies / machine learning
- Greater use of distributed inflow forecasting
- Further system integration
- Greater automation
- Expanded visualization/ Cloud computing and access

Vista DSS: international and across Canada experience, yet a made in Ontario solution

+ Thank you.

For more information, please visit www.hatch.com

Francois Welt, Manager, Power and Water Optimization francois.welt@hatch.com

Tryggvi Olason, Senior Water Resources Specialist, Power and Water Optimization tryggvi.olason@hatch.com

